

Optimizing Manufacturing Supply Chains: A Time Series Approach for Demand Forecast

Samarth Bansal, Chaitanya Krishna Burri, Sathwik Kanukuntla, Priya Sharma, Akanksha Singh, Matthew A. Lanham

bansa115@purdue.edu; cburri@purdue.edu; ksathwik@purdue.edu; sharm841@purdue.edu; sing1230@purdue.edu; lanhamm@purdue.edu

Mitchell E. Daniels, Jr. School of Business

Validation data: last 6 months

To further refine these forecasts, it may be beneficial to:

- Implement rolling forecast model that periodically updates and extends the training dataset.
- Explore reasons behind the higher WMAPE for certain materials and adjust model or data treatment accordingly.
- Consider integrating more sophisticated techniques like machine learning or ensemble that capture complex patterns better.

LIFE CYCLE MANAGEMENT

The gap between the standard and maximum forecasts for the final product was successfully reduced by up to 50%.

Cut down the time required for future demand computation (transitioning from Excel to Python) by 80% enhancing operational efficiency

Achieved effective categorization of the products into various segments based on their forecastability

Model Maintenance: Ongoing monitoring for the model's performance against key metrics, with alerts deviations from acceptable thresholds

