Beyond the Contract
An Analytical Approach to Supplier Risk Assessment
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: . , , External and Synthesized Data
Our proposed process involves collecting data across 5 KRIs which totals to 112 metrics F m o mm o m e e e e e o ____,

for evaluation.

In today's rapidly evolving business landscape, there is a rising number of risk-related
incidents involving vendors, causing disruptions to businesses and tarnishing their
reputations.
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Data pre-processing encompasses several key steps to refine data for analysis: filling IR > < 7 ' 7 !

Market Statistics missing values for integrity, converting categorical data into binary vectors through one- ! \w \M \M !
hot encoding for accuracy, transforming text to numerical categories for better analysis, ! :

removing stop words to improve sentiment analysis, and employing lambda functions for ! :

directional interpretation of parameters, assigning positive or negative outcomes based @ 77777777 [ L l— """"

on values.
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to capture risk effectively. Assuming that the performance of high-risk organizations are

— company1 SCOre contributions of 3 sample
poor, our model aims to incorporate additional factors like Compliance Risk,

— compaw?  Companies to the Final Risk Score.
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