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We develop a Reinforcement Learning (RL) agent that serves as a basic template for

making pricing decisions as a function of time. In this scenario we use sports ticket data

from an NFL partner, both sold and unsold to extract the probability of a ticket being sold at

a certain price and number of days prior to a game. Using these probabilities, we derive an

environment containing rewards as expected revenue from selling a ticket at a certain price

level on a certain day. The RL agent then iteratively takes actions/decisions within its

environment based off the state it is currently in and receives an expected revenue reward.

The agent continuously iterates through its environment until it has found an optimal policy

of actions to take in certain states to maximize the long-run reward. RL is a relatively new

field of artificial intelligence with a variety of applications that include sequential decision-

making. Here we will show the power RL has on time-driven pricing decisions.
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Reinforcement Learning Approach to Dynamic Ticket Pricing

Key Research Questions:

• Can a Reinforcement Learning agent learn an optimal pricing policy to maximize long-

run ticket revenue?

• Can an optimal policy be obtained by using policy simulation rather than iteration?

In this study we show that a Reinforcement Learning agent can learn an optimal ticket

pricing policy. By setting up an environment of actions composed of ticket pricing

decisions and states composed of sale date we were able to model ticket price as a

function of time in the eyes of the Reinforcement Learning agent.

After developing a policy evaluation algorithm in which the agent performs trial-and-

error by pricing certain tickets at certain values with different probabilities of being sold

we were able to find an optimal policy to maximize reward by simulating 10,000 random

policies for the agent to act by.

Secondly, by performing policy iteration using a randomized simulation of different

policies, we were able to get a vast distribution of many policies. From these policies we

were able to select one in the 95th percentile that makes us confident our agent will

select a pricing scheme that maximizes long-run revenues.

While sporting tickets are often posted for sale a few months or weeks before

an event, data from an NFL partner indicates that of tickets sold, 56% of these

sales occur 0-2 days away from the game.

Fig 4. Policy Value Percentile

Fig. 5 Percentile Bar Chart Displaying Location of Current State Policy
Fig 1. Histogram of Ticket Purchases by Days until Game

STATISTICAL RESULTS

Fig 3. Policy Simulation Results
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We focus on ticket prices

and revenues as a

function of days until the

game.
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Figure 3 and 4 display our Monte

Carlo policy iteration simulation

results. After randomly simulating

10,000 different decision policies

we analyze the RL agent’s ability

to maximize the value of selling

tickets at specific prices.

Key Findings:

• Value increases as agent sells more $0-65 tickets

• Agent learns value tradeoff between selling tickets 

$66-130 and $131-195, ultimately learning $66-130 

contributes more to expected value

Current Pricing 

Agent Found Value = 37.58

Agent Found Value = 43.80

Using Monte Carlo Optimal 

Policy:

Figure 5 displays the location

of the NFL team’s current

pricing policy 2 days before a

game. As seen above this

policy value is around 37.58

which lies around the 67th

percentile of all policies

evaluated during the Monte

Carlo policy simulation.

By using this less-than-optimal

policy we are losing a value of

16.55% reward in the long-run.
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