
A Case Study of the Python Django Framework to Help Recruiters 
Identify Analytics Talent

Xin Li Leong (leong8@purdue.edu), Matthew A. Lanham (lanhamm@purdue.edu)
Purdue University, Krannert School of Management

Django Self-Created App Structure

Django Project Structure

Data

Provide a short video 
from each candidate 
about themselves like a 
dating service 

Provide interactive 
Tableau figures 

We develop a web application for companies seeking analytics
talent for Purdue’s M.S. in Business Analytics & Information
Management program using the python Django framework. The
motivation for this work is that university career services functions
are often poor at showcasing their students for employment.
Secondly, many data science and analytics degree programs either
lack a course or opportunities within the curriculum that provide
students an opportunity to design and develop open-source
front-end analytics tools for their end users. Our study provides a
case for such a course where a student might extend their python
programming skills to develop a front-end GUI using the Django
framework for a real critical need within a universities’ career
services function.

Abstract

Introduction

Research Question

This study provides a working example of the python Django
framework to help career services better showcase Purdue’s
MS BAIM students.

We plan to add the following features to this project then
deploy it for use this May. We will survey industry partners
and the students to obtain feedback on the applications use
in helping match them to jobs.

Conclusions & Future Features

I would like to thank Professor Matthew Lanham for
constant guidance on this project.

Acknowledgements

http://testaccountbaim.pythonanywhere.com/candidates/

Working App

Add placement locations
and program statistics

Remove candidates that
have accepted offers

Often there is a disconnect between the university program and
career services. University programs spend a great deal of their
marketing resources highlighting faculty, school branding,
showcasing innovative curriculum, or other initiatives that help
pull students in the door. The problem is once students are ready
to enter the job market, they are supported by a career services
function that rarely helps recruiters or hiring managers find what
they are looking for. The services provided mostly focus on
resume and cover letter reviews and mock interviews. The issue is
there is a missing step in the placement process where those
hiring need to be able to seek and narrow down what they are
looking for among candidates that are still seeking employment.
Having the ability to do this better would help close the loop from
students entering the program to graduating from the program.
We posit this could also better help achieve academic program
placement statistics.

Many data science and analytics programs teach students how to
develop a data product or tool in R using Shiny, but very few,
show best practices or examples of how to develop front end tools
using Python.

Can we provide a case example of the Django framework for
future analytics students that helps support a career services and
academic program need for current analytics students?

Data used in this study was provide by candidates in Purdue’s M.S.
in Business Analytics & Information Management program who
were set to enter the job market in May 2020.

Django Framework

Website Design Considerations

Django Project Setup

Django Benefits

GitHub Repository

Show candidate images
as retro baseball cards

https://github.com/lxlxinli/purdue-BAIM-website

User
Interface
Design

Data
Design

We drafted a website layout that’s user
friendly, incorporated Purdue’s signature colors
and was unique compared to other websites to
attract recruiter's attention. Recruiters could
filter passed on certain candidate features.

We drafted an ERD containing all required
tables and fields taking special consideration
into handling already placed students.

Django has an MVT architecture which shares similarities with the
MVC architecture. The MVT architecture is unique where a View is
a request handler while any other app logic that does not return a
response is placed in a separate file.

1. Install Python3
2. Set up a virtual environment
3. Install Django
4. Create your project
• django-admin startproject projectname

5. Starting an application
• python manage.py startapp appname

Enforces Python package

Contains settings

Project-level URL config

Enable compatible web
servers to serve the project

Stores migrations (changes) to database

Place to register app model in admin app

Stores css, javascript, images etc.

Models (database) for app is defined

Logic to process request and return
responses

Example of app logic that doesn’t return
a response

Stores html files

1. Complete
Django packages contain nearly everything developers would
need to use under one framework. Everything works seamlessly
together and has an extensive up-to-date documentation and a
strong online community support as well.

2. Secure
Django’s framework has been built to protect the website
automatically. It handles account and password security, CSRF
security and many other things,

3. Scalable
Django’s independent project structure allows developers to
change or replace any individual component easily without
minimal effect to the rest of the project.

4. Maintainable
Django code design prioritizes maintainable and reusable code
and uses the DRY principle.

5. Pre-built Apps
Django has a lot of useful apps such as django-registration,
django-import-export and django-crispy-forms that can be
easily integrated into your project without much extra coding.

http://testaccountbaim.pythonanywhere.com/candidates/
https://github.com/lxlxinli/purdue-BAIM-website

