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ABSTRACT 

 
In this paper we show the expected gains that a retailer might achieve by using stochastic cost-benefit 

analysis to select the products incorporated into their assortment planning decision as compared to 

traditional, statistical performance measures for model assessment in isolation. The motivation for this 

research is that the assortment decision is considered one of the most important decisions that a retailer 

will make due to its direct link to sales, inventory costs, margin, etc. We investigate naïve binary 

classification models trained using different rebalance techniques to identify product “sellers” from “non-

sellers.” This approach can be used to rank products based on raw propensity scores or be used to reduce 

the evaluation space when faced with having to model hundreds of thousands of products and estimating 

their substitution behavior. Using product category data from a national retailer, we train and evaluate 

different rebalancing-model sets and compare the outcomes from a statistical perspective, in addition to a 

financial perspective that incorporates the retailer’s revenue and costs for the products placed in the 

assortment. 
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INTRODUCTION 

 

An assortment is the product set carried in each store at any point in time [1]. This geospatially-

customized set will require modification over time due to changes in consumer preferences. The domain 

of assortment planning has traditionally lied in the strategic marketing planning domain, whose goals are 

geared toward product categories or supplier contracts, which make for longer planning horizons [2]. The 

primary task involved in assortment planning includes listing and delisting products so that an optimal 

assortment remains over time. 

 

Assortment planning research focus has changed over time as the area has evolved and new approaches to 

modeling consumer demand are examined. Historically, assortment planning has been a process 

employed to find the optimal set of products to carry and amount of inventory to maintain of each product 

[3], but today it is viewed more specifically as making product decisions based on consumer choice 

behavior and substitution effects [2]. The research in this area continues to grow because the retailers’ 

assortment mix is and will always be one of the most important decisions faced by retailers. This is 

because of the impact that the set of products carried and not carried can have on key business 

performance indicators (KPIs), such as overall sales, inventory costs, margin, etc. [1, 4]. Moreover, 

retailers with the ability to modify assortment decisions as demand evolves can create competitive 

advantages, as well as differentiate themselves from their competitors [5].  
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From a decision modeling perspective, the objective of any assortment planning model is to determine 

which products to carry in a location (e.g. store, HUB, DC) in order to maximize sales. In addition to this 

performance measure, various constraints must be satisfied. Budgetary constraints are imposed on each 

category manager (i.e. the assortment decision-maker) that limits what products they can add during their 

seasonal line review. This budget can be decomposed into the number of new
1
 products they can add to 

their categories’ assortment during a line review and the products already stocked in each store that will 

remain in their assortment until they are sold, marked down, moved to another location, or returned to the 

distribution center.  

 

Shelf space is another constraint that limits the number (and amount) of product that can be stocked on 

the shelf per category. One could easily classify the assortment decision as a classical knapsack of 

knapsacks OR problem with the physical space of the store and respective category shelf space within the 

store being the primary physical constraints of the optimization problem. Due to the capacity constraints, 

a retailer will not have to ability to stock in every location every potential product a consumer may desire 

[4]. Even if it was physically possible, it would not be financially feasible. Strategic constraints are also 

often incorporated into the assortment decision that account for competition and supply chain resiliency. 

Examples include having more product coverage for stores having more local competition and having 

multiple vendors for each product type. Recent research in this area has shown that if a rival store exists 

within its geographical market, the presence of the rival can have an effect on product variety and product 

overlap. Specifically collocated rivals (less than a mile apart) are more apt to differentiate their 

assortments by having less overlapping products than their distant rivals (a competitor further than a mile 

away, but within 10 miles) [6]. 

 

The most challenging aspect of assortment planning is being able to solve the decision model because the 

combination of potential assortments is large given the vast number of stock-keeping-units (SKUs), 

which leads to a problem having NP-Hard computational complexity [7]. Aside from solving the decision 

model, we find a more interesting challenge is to identify consumer demand preferences among the vast 

set of SKUs. Tackling this challenge gets into the hot research area of Big Data Analytics (BDA).  

 

Big data is the massive amounts of data that firms collect via customer databases, web crawlers, server 

logs, social media, and other devices [8]. The big data problem can be divided into three basic 

components known as the 3Vs: volume, velocity, and variety. Retailers today are not only capturing more 

internal measures (e.g. web clicks), but are capturing vast external sources of information coming from 

new sources such as social media (e.g., Facebook, Twitter, etc.), machine sensors, weather forecasts, and 

GPS location tracking making data grow faster than ever before. The total amount of potentially insightful 

data nearly doubles every two years, and thus has been referred to by some as “Moore’s Law of 

Marketing [9].” The largest retailer in the world being Walmart collects approximately 2.5 petabytes of 

customer transaction data every hour [10]. The velocity/speed of all this incoming data makes data 

processing expensive to employ using traditional in-house hardware and software analytics tools that 

must process the data in a timely fashion [11]. Lastly, the variety of the data, most notably unstructured 

data, leads to issues of storing and analyzing it, compared to structured data stored in relational databases. 

This has led to new technologies, frameworks, and languages to be developed, such as Hadoop, Map 

Reduce, and Pig to name a few.  

 

According to SAS, “Big data analytics is the process of examining big data to uncover hidden patterns, 

unknown correlations and other useful information that can be used to make better decisions [12].” Due 

to the interest and potential of BDA, the Data Scientist role has emerged to tackle the challenge of finding 

patterns in diverse data sources with the goal of better understanding consumer behavior and to identify 

                                                 
1
 New products are defined here as either 1) completely new products purchased from a vendor or 2) products that are “new” to 

the a particular store because they have never been stocked in that particular location 



new opportunities [13]. We posit that collecting data is the easy part, but identifying precise and creative 

approaches to analyze the data collected is the true challenge. As BDA become more mainstream, it will 

change established views on the value of experience, expertise, and management practice [10]. 

Fortunately, some firms are not afraid to modify their organizational culture to a more analytics-rich 

culture. 

 

According to Andrew McAfee and Erik Brynjolfsson of MIT, companies that inject big data and 

analytics into their operations show productivity rates and profitability that are 5% to 6% higher than 

those of their peers [14].” Thomas Davenport found that among the 50 firms he interviewed that were 

experimenting with BDA are achieving results in the form of reduce costs, faster decisions, and new 

products and services [15]. We expect the gains from implementing the solution we propose in this study 

can lead to reduced costs, and possibly faster decisions.  
 

With regard to employing BDA to improve assortment planning, we have found nothing in the literature. 

The majority of papers focus on toy problems having assortment planning test cases averaging less than 

or equal to 29 items which are unrealistic in practice [2].  One of the fundamental requirements needed to 

support the assortment decision are accurate measures of demand, which may be unit forecasts, 

propensity to sell more than some specified number of units in a particular store, as well as consumer 

choice substitution behavior. Unit forecasts are typically univariate or multivariate time series models 

such an error-trend-seasonality (ETS) models, or advanced ARIMIA models. Propensity to sell models 

are binary classification approaches typically used to rank products on a [0,1] standardized scale using 

binary classification techniques such as logistic regression, decision trees, etc. The binary response is 

calculated by specifying winners, number of previously sold units greater than x as one class (i.e. 

“sellers”), and the other observations less than x as a different class (i.e. “non-sellers”). Consumer-choice 

substitution behavior modeling has been popular as of late in the assortment planning literature, where 

methodologies such as multinomial logistic regression, location-choice, and exogenous demand are often 

used to estimate the probability that one product in a set of substitutable products will be chosen where 

the probabilities for each substitutable set equal one. However, binary classification models could be used 

to rank an entire category of products based on their propensity to sell, or to reduce the modeling set to 

something more reasonable when identifying potential substitutes using multi-classification techniques 

(e.g. multinomial logistic regression). Based on the previously mentioned potential benefits of BDA and 

the need for better demand predictive models to support the assortment decision, we believe this paper 

provides a basic, yet novel, approach to assessing the performance of the predictive models based on 

financial measures.  

 

We structure this paper by providing a brief synopsis of the academic literature, describe the research 

design methodology we employ, discuss our results, and lastly discuss our conclusions, practical 

limitations and research we are currently performing to make our proposed solution extendable to other 

modeling endeavors where financial performance considerations must be considered. 

LITERATURE REVIEW 

 

With regard to employing BDA to improve the assortment planning, we have found nothing in the 

literature. According to Kök, Fisher [1] there still lacks a dominant solution for assortment planning, as 

the area is still relatively new, which is providing “a wonderful opportunity for academia to contribute to 

enhancing retail practice.” Academic research on improving the assortment decision has focused on 

formulating an optimization model that selects the best sets of products to carry and their respective 

inventory levels. Due to the computational complexity of the number of products to choose from, a single 

category or subset of similar products is usually investigated. Research has mostly focused on one 

assortment for a retailer, even though retailers will regularly have different assortments for different 

stores due to the differences in customer preferences. According to Hubner and Kuhn, shelf space 



planning research has plateaued over the past three decades, but assortment planning continues to gain 

interest in the operations research field because of a partial incorporation of substitution effects in their 

model [2]. 

 

From an operational perspective, retail product and shelf allocation are made with little regard to a 

company’s overall strategies or cross-functional effects [16]. We have found such decisions are usually 

made in their respective departmental silo and then passed on as parameters to assortment planners 

working to derive a customized assortment per store, as well as inventory management which is tasked 

with getting the product from suppliers into the DCs, HUBs, and stores. 

 

From a Decision Support System (DSS) perspective, there is a great need because of the challenge of 

modeling descriptive, predictive, and prescriptive components required of the assortment decision 

cohesively at such a scale. Moreover, the competitive nature of business continues to intensify as 

consumers become more research savvy leading retailers to focus more on their customer’s needs to 

provide them the products and services they desire, while still achieving operational competence. It has 

been shown that assortment and shelf space planning models are not comprehensively united into 

commercial software, and the software vendor packages mainly focus on large-scale data processing and 

less on intelligent decision making algorithms [2]. In the end, retailers are seeking more robust tools that 

leverage information technologies to provide them scalable platforms to help them model product demand 

more efficiently and make optimal assortment modifications as demand changes. These tools must not 

only consider the technical, statistical, and computational aspects of the modeling endeavors, but the 

business performance measures as well. 

 

To figure out what to stock in a category, the retailer must have a firm understanding of what they want. 

The “first moment of truth,” is what Procter & Gamble refer to as the moment in time after a shopper has 

arrived at a retailer’s shelf [17]. At this point the retailer will either have the product that the customer 

desires, have a product substitute, or the customer will leave without making a purchase. 

 

Most of the academic research that models purchasing behavior has focused on substitution behavior. 

Substitution is when a customer seeks a particular product at some venue, the product is not available, 

(because it is not carried or out of stock) and the customer then decides to purchase a similar product in its 

place. Being able to quantify substitution behavior is important when customers have a higher propensity 

to substitute within a category because the retailer need not have as much depth, nor a high in-stock 

service rate. However, when customers are less likely to substitute, more depth and high in-stock service 

levels are important to reduce the impact of lost sales [1]. 

 

There are three types of substitution: stock-out based, assortment-based, and utility-based substitution. 

Stock-out based substitution is when a customer shops recurrently for a product that has been purchased 

before (e.g. a daily consumable such as milk), but finds it out of stock so they purchase a different 

product. Assortment-based substitution is when a customer has identified a particular target product, 

possibly from what they observed as being offered in other stores or from advertisements. However, they 

cannot purchase it within a store because it is not carried so they purchase a different product. Stock-out 

and assortment-based substitution occurs frequently when consumers are shopping for daily consumables 

such as grocery products. Utility-based substitution is more of a speculative idea to understanding 

substitution behavior that claims that a consumer will purchase the product that yields them the highest 

utility if greater than the no purchase option is among a set of products available on the shelf. It could be 

that their target item is not on the shelf or there are other items that would yield them higher utility that 

they are unaware of, but since these products were not in the assortment or out-of-stock their purchase 

decision involved substitution effects. Consumers regularly make utility-based substitution purchasing 

decisions when shopping for clothing, consumer electronics, or auto parts. Products in an assortment may 

serve as substitutes, so the customer may purchase some product just to satisfy their needs and not their 



actual wants. This leads to a condition where the demand for each product is influenced by the assortment 

of products that are offered [18]. The marketing literature has shown that when a consumer’s target item 

is not available, anywhere between 45% and 84% of demand can be satisfied by substitution goods [19-

22]. A consumer’s particular characteristics, the situation, and the product itself will influence the 

expected substitution potential [22, 23]. 

 

An assortment should have the right depth (i.e. product categories) versus diversity (i.e. number of 

options within a category). However, being able to generate such an assortment is a challenging task. 

High selling items could be due to highly-correlated compliment or substitutable products that would not 

sell alone. There are other types of products that sell better when pooled with other products (e.g. 

chocolate syrup in the ice cream isle). Amazon.com is one example of an online retailer that has figured 

out how to do this well. Their recommended items section supported by their proprietary recommendation 

engine provides customers suggested items they are likely to want based on their viewing and purchasing 

behavior. These reasons alone show that demand forecasts must look beyond traditional approaches to 

modeling consumer demand (e.g. MNL), or simple time-series (e.g. ETS, ANOVA) model, and be savvy 

enough to identify opportunities to improve the assortment. For these reasons, and an acknowledgement 

that understanding substitution behavior is important, we venture other approaches to modeling product 

propensity and try to tie their traditional assessment measures back to the key business measures ($). 

Binary Classification 

 

In this study, we investigate binary classification predictive models. Binary classification algorithms fit a 

model having a binary response (e.g. No/Yes, 0/1, etc.). When the model is a fit, a continuous prediction 

for each record is generated that lies between 0 and 1. These predictions are then compared to a specified 

decision cutoff criterion, which allows each prediction to be classified as a member of only one of two 

possible disjoint classes. For example, a predictive value of 0.72, with a specified decision cutoff criterion 

of 0.60 would classify this observation to “Class 1”, instead of “Class 0.” 

 

There are many binary classification algorithms coming from the statistics and computer science/machine 

learning literatures, and each has its own optimization performance measure that it is trying to minimize. 

Each model can perform better than another model on different datasets due to characteristics of the 

predictors, the dimensionality of the data, and how balanced the classes are when training a model. 

 

Our binary classification models are employed on previously stocked stock-keeping-unit (SKU) that have 

sold over a particular time interval. Each SKU that has sold over a specified number of units as deemed 

by the retailer are considered “sellers” (or Class 1), while those that have not sold more than a specified 

number of units over a certain time interval are labeled as “non-sellers” (Class 0). 

Class Imbalance 

 

Class imbalance occurs when one class has more observations than another class. For example, training a 

model with 100 records where 70 had a response value of “Class 1”, while the remaining records had a 

response value of “Class 0”, which would yield a minority class imbalance of 30%. Studies have shown 

that not taking into account the class imbalance can have negative consequences on model estimation 

[24]. Essentially, the imbalance makes it difficult for the binary classification to learn, which usually 

leads to correctly classifying majority class records and not the minority class records [25]. Today, there 

is not one technique that works optimally well for all data sets and researchers continue to work on 

creating a unified rebalancing framework to tackle this problem [26]. He and Garcia [27] provide a 

throughout review of this area. In our study, we investigate non-balancing, down-Sampling, up-Sampling, 

SMOTE, and ROSE. 

 



Non-balancing means that after the entire data set is randomly partitioned into training and testing sets, 

the training set will usually have a class imbalance percentage that follows closely, if not exactly, to that 

of the overall data set. In this case, the training data set is used to train the binary classification model. 

Down-sampling is when a sample of the majority class is used so that the number of records in both 

classes is the same. Likewise, Up-sampling resamples the minority class until the numbers of records for 

both classes are the same. Up-sampling will always lead to more training records which can be a positive 

when training a model. However, when the data dimensionality is large it can be computationally time 

consuming and must be considered by the retailer so that predictions can be delivered to decision-makers 

as scheduled. Synthetic Minority Over-sampling Technique (SMOTE) over-samples the minority class by 

creating “synthetic” records rather than resampling the minority class with replacement. Finally,  Random 

OverSampling Examples (ROSE) is another common rebalancing technique that employs a systematic 

framework for correcting learning issues that arise from unbalanced data by employing a smoothed 

bootstrap resampling methodology [26]. 

Model Assessment 

 

When predictive models are constructed they must be empirically validated. Typically, the process 

involves fitting/training a model on one data set, and then once the model is constructed to feed in another 

data set that was not used to train the model commonly referred to as a testing set. This cross-validation 

procedure provides a proxy of truth about the validity of the model as well as gauges the expected 

performance of future predictions when new data are used.  

 

Next, we will discuss traditional statistical measures of model performance, such as the confusion matrix 

and how such matrices lead to the construction of the Receiver Operating Characteristic (ROC) curve. 

The ROC curve is the most frequently used metric used to compare and assess different models. We then 

introduce stochastic cost-benefit analysis measures and provide a basic explanatory example before 

employing it on a national retailer’s product category. 

Confusion Matrix & Statistics 

 
The confusion matrix, as shown in Figure 1, is a cross-tabulation table that provides a gauge of how well 

a model’s predictions were classified compared to the response. Since the response only has two possible 

classes in our case (i.e. sold vs. not sold), our predictions, in the form of a probability between [0,1], are 

assigned to one of these potential classes. The assignment is based on the modeler’s specified cutoff 

threshold, which is most often 0.5. This means that if a prediction realizes a value of 0.67, it will be 

assigned to the “seller” class or “Class 1” because the prediction is larger than the threshold parameter. 

Likewise, a value of 0.49 would be assigned to “Class 0” or “non-seller” and so on for all probability 

predictions.  

 

                          
Figure 1: Confusion Matrix 

 



A large number of true-positives (TP) and true-negatives (TN) on the diagonal of the matrix and a small 

number of false-positives (FP) and false-negatives (FN) provides an indication that the model used 

performs well at identifying SKUs that will sell or not sell in our context. 

 

Many statistics can be calculated form this simple table. The overall accuracy of the model can be 

captured by (𝑇𝑃 + 𝑇𝑁)/𝑇𝑜𝑡𝑎𝑙 and is one benchmarking target often cited in practice to gauge 

performance. Interestingly, overall accuracy does not provide any distinction about the type of error the 

model is making and the prevalence that the SKU will sell. Some SKUs will inherently have higher or 

lower sales frequencies than other SKUs within their part type category. These differences in prevalence 

force us to measure many other important accuracy measures allowing us to make model improvements 

with the goal of continuous process improvement. For example, what is more expensive to a retailer’s 

business – incorrectly putting a SKU in a store and it not selling or not putting a product in a store when it 

would sell? None of the statistical performance measures shown in Table 1 capture the financial business 

performance KPIs, such as expected profit of correctly classifying one SKU versus incorrectly classifying 

another SKU.  

 
Statistic Alternative 

Name 

Description Formula 

Overall Accuracy  Probability that a SKU is classified as a seller and non-

seller correctly 

𝑇𝑃 + 𝑇𝑁

𝑇𝑜𝑡𝑎𝑙
 

Sensitivity True-Positive Rate; 

Recall 

Probability that a retailer will predict a sell when there is 

actually sell 

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

Specificity True-Negative Rate Probability that a retailer will not predict a sell when there 

is not a sell 

𝑇𝑁

𝐹𝑃 + 𝑇𝑁
 

Type I error rate False-Positive Rate; 

1- Specificity 

Probability that a retailer will predict a sell when there is 

not a sell 

𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 

Type II error rate False-Negative 

Rate 

Probability that a retailer will not predict a sell when there 

is actually sell 

𝐹𝑁

𝑇𝑃 + 𝐹𝑁
 

Positive Predictive 

Value (PPV) 

Precision Probability that the SKU did sell when it actually sold (an 

unconditional analog to sensitivity, which takes into 

account the event’s prevalence) 

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Negative Predictive 

Value (NPV) 

 Probability that the SKU did not sell when it actually did 

not sell (an unconditional analog to specificity, which takes 

into account the event’s prevalence) 

𝑇𝑁

𝐹𝑁 + 𝑇𝑁
 

Positive Likelihood 

Ratio (PLR) 

 Ratio between the probability that the retailer predicts a 

sell when there is a sell and the probability that a SKU will 

sell given it actually did not sell 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

1 − 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦
 

Negative 

Likelihood Ratio 

(NLR) 

 Ratio between the probability that a retailer predicts a SKU 

will not sell given it actually sold and the probability that 

the retailer predicts that the SKU will not sell given that it 

did not sell 

1 − 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦
 

Youden’s J Index 

Youden [28] 

J Index The proportion of correctly predicted samples for both the 

seller and non-seller groups (an alternative to the ROC 

curve) 

Sensitivity + 

Specificity - 1 

Cohen’s Kappa Kappa Historically been used to assess agreement among two 

raters but is appropriate to the retailer in this context as 

well [29]. If we let O = observed accuracy and E = 

expected accuracy, we can calculate Cohen’s Kappa 

statistic based on the confusion matrices’ marginal totals. 

Let, 𝑂 =  𝑇𝑃 + 𝑇𝑁 and 

       𝐸 =
(𝑇𝑃+𝐹𝑃)∗(𝑇𝑃+𝐹𝑁)

(𝑇𝑜𝑡𝑎𝑙)
+

(𝐹𝑁+𝑇𝑁)∗(𝐹𝑃+𝑇𝑃)

(𝑇𝑜𝑡𝑎𝑙)
 

𝑂 − 𝐸

𝑇𝑜𝑡𝑎𝑙 − 𝐸
 

Table 1: Statistical measures to benchmark from our binary classification models 

Area Under the Receive Operating Characteristics Curve 

 



The Receiver Operating Characteristic (ROC) curve is created using two of the model assessment 

statistics in Table 1that were generated from the confusion matrix. The primary extension of the 

confusion matrix and corresponding statistics is that the ROC curve is based on calculating a confusion 

matrices based on different cutoff thresholds. As explained previously, the typical cutoff to assign 

probability predictions to classes is 0.50, but if one were to calculate and store confusion matrices having 

cutoffs ranging from 0 to 1 (e.g. 0.01, 0.02, …, 0.99) one could evaluate model classification performance 

for these different scenarios.  

 

Having many confusion matrices with associated statistics could be difficult to analyze, thus the ROC 

plots sensitivity versus the type I error rate, also known as one minus specificity for each cutoff threshold 

as shown in Figure 2. 

 
Figure 2: Receiver Operating Characteristic (ROC) curve 

 

Figure 2 shows a nice smooth curve because the granularity of cutoff thresholds ranged from 0.001 to 

0.999. In the context of our study, the sensitivity statistic estimates the probability that the retailer will 

predict a seller when the SKU was indeed actually a seller (i.e. sold), so it is a true-positive rate. A retailer 

would want sensitivity to be as high as possible, but the higher the sensitivity becomes leads to a negative 

tradeoff with the false-positive rate, meaning the retailer is more likely to predict and classify a SKU as a 

seller when in fact it is a non-seller. This is important to the retailer because stocking products that will 

not sell lead to additional inventory costs and take up shelf space for products that could sell. Moreover, 

the longer seasonal effects of having to markdown unwanted products hurts the retailer’s margin, which 

based on the quantity of the markdowns, can lead to dramatic consequences to the retailer’s bottom line.  

 

To assess the overall performance of the model based on the ROC curve, the physical area under the 

curve (AUC) can be calculated. A curve having no classification ability will lie perfectly on the 45 degree 

line, thus the AUC is 0.50. Ideally, the retailer would prefer an ROC curve that goes from point (0,0) to 

(0,1) to (1,1) which would indicate perfect classification for any cutoff threshold and lead to an AUC of 1 

as shown in Figure 3. 



 
Figure 3: Receiver Operating Characteristic (ROC) curve showing AUC percentage 

 

In the predictive modeling process, different binary classification modeling algorithms will generate 

different ROC curves. Thus, one could impose ROC curves for each model to visually compare one 

model versus another, or one could just compare the AUC values that provide a measure of the optimal 

balance of a high true-positive rate and low false-positive rate across the board [30-32]. We have found 

that in practice and in the academic literature that the comparison of ROC/AUC is the gold standard 

binary classification model comparison metric among all possible statistical classification performance 

measures. 

Stochastic Cost-Benefit Analysis 

 

A great motivation for Stochastic Cost-Benefit Analysis is an observation made by Provost and Fawcett 

[33], “Even if a model passes strict evaluation tests "in the lab," there may be external considerations 

that make it impractical. For example, a common flaw with detection solutions (such as fraud detection, 

span detection, and intrusion monitoring) is that they produce too many false alarms. A model may be 

extremely accurate (>99%) by laboratory standards, but evaluation in the actual business context may 

reveal that it still produces too many false alarms to be economically feasible.” 

 

Based on our experience and research of developing models to support the assortment decision, there 

appears to be some correlation with a model’s statistical performance and actual business performance, 

but there still exists a gap integrating the two intelligently. Moreover, the decision-makers using the 

decision-support provided by the predictive models are usually not interested in statistical performance 

but rather financial costs associated to the decisions they make. When a model is built and assessed for a 

set of products, those products will have certain sales, quality, and feature characteristics that are used to 

estimate the propensity of it selling. However, one must recognize that the actual direct and indirect costs 

($) will vary based on the product. For example, the grocery retailer will often model similar products of 

the same category collectively. The model might suggest that ketchup brand A has a 55% chance of 



selling in a certain location (i.e. “a seller” or “Class 1”), whereas ketchup brand B has a 48% chance of 

selling in the same location thus a non-seller (i.e. “Class 0”). If brand A is premium and we assume it 

sells for $3, brand B is the store brand and sells for $1, and both products have the same unit costs, there 

is an issue of treating these SKUs as equals with regard to statistical assessment. The retailer’s binary 

classification model might have misclassified these products, but their financial misclassification is not 

accounted for using the traditional statistical performance measures. 

 

This practical phenomenon naturally leads to motivation for a retailer to assess their predictive model 

accuracy criteria with non-accuracy-based business criteria which we describe as stochastic cost-benefit 

analysis. We posit that a retailer building predictive models and using the “best” models to predict the 

probability that SKU will sell in a particular location is needed. The intuition is for them to be able to 

identify the most highly desired products to stock in a location, thus leading to the greatest potential sales. 

However, this logic does not necessarily lead to optimal decision-making and thus achieving the retailer’s 

true business key performance indicators (KPIs).  

 

Consider the following motivating example that incorporates the sales and costs of each SKU in dollars. 

A retailer will want to try and minimize the false-positive and false-negatives. Some false-negatives will 

have a lost sales cost of not stocking the product in a location when it would have sold. False-positives 

will have their own costs as well, such as inventory, recycling, and lost opportunity costs because the 

product was purchased and place in a location and it did not sell. In our scenario we only consider the cost 

of the product and do not incorporate those additional inventory and recycling costs. In the financial form 

of classification we show here, if the retailer correctly predicted SKU 𝑖 would sell they would know that 

the associated profit for that SKU is 𝑝𝑖 = 𝑟𝑒𝑣𝑖 − 𝑐𝑜𝑠𝑡𝑖. However, if SKU 𝑖 does not sell but was 

predicted to have sold they would earn −𝑐𝑜𝑠𝑡𝑖 for making that stocking decision. The total reward of 

correct and incorrect decisions is shown in Error! Reference source not found.. 

 
Figure 4: Costs-benefit confusion matrix 

 

If we considered ten products from a similar product category shown in Table 2. These products will have 

similar domain characteristics, but will have varying prices, costs, margins, and profits. We can see that 

historically certain products have sold over a specified time frame (i.e. “sellers”) and some have not sold 

(i.e. “non-sellers”). The model estimates a probability that each product will sell and based on the cutoff 

threshold of 0.50 each product can be assigned to a class. Using the basic equations in Figure 4, we can 

calculate the expected return for correctly classifying each SKU. 

 



 
Table 2: Example of 10 SKUs expected return based on the decisions made by the predictive model 

 

Figure 5 shows the traditional confusion matrix based on counts of correctly classified and incorrectly 

classified SKUs. Evaluating the classification accuracy for this model, the overall accuracy is 70% (7/10), 

sensitivity is 80% (4/5), and specificity is 60% (3/5). 

 

 
Figure 5: Confusion matrix based on a decision cutoff criterion of 0.50 

 

Figure 6 shows the cost-benefit of using this model to stock SKUs classified as sellers or non-sellers. In 

this example, the model would yield a positive net gain, but the misclassification of SKU A has a major 

overall impact to the business, possibly leading to an overall loss for this product group because the 

retailer is not incorporating the additional inventory, recycling, and lost opportunity costs. 

 

 
Figure 6: Estimated business-costs-benefits 

 

If several models were compared in this fashion we posit that more information is gained for decision-

making purposes than comparing the models on traditional statistical performance alone. Moreover, 

model evaluation might lead to better interaction with the decision-makers that the model is supporting, 

because traditional classification statistics may or may not resonate with them. Based on our experience, 

talking about expected performance in units they understand (i.e. dollars) has led to much better feedback 



and improved decision-support. In theory, had our predictive model displayed better performance, we 

would have realized a higher business benefit return and lower costs.  

 

RESEARCH DESIGN 

 

To evaluate our proposed stochastic cost-benefit performance measures we tested four different binary 

classification algorithms (Logistic Regression, Classification tree, C5.0 decision tree, Linear Discriminant 

Analysis) on one product category from a national retailer. The dataset was randomly split into a 70% 

training dataset and a 30% out-of-sample testing dataset. Due to the dataset being imbalanced, the training 

dataset was rebalanced using four commonly used rebalancing techniques (up-Sampling, down-Sampling, 

SMOTE, and ROSE) as well as evaluated without rebalancing. 

 

We compare the different modeling approaches to identify what the optimal model chosen would have 

been based solely on traditional binary classification performance measures (e.g. AUC, Overall accuracy) 

and then compare those results to the stochastic cost-benefit evaluation procedure to see how well they 

correlate. 

 

For this one product category, this design allows us to answer these three research questions: 

1. What are the expected business gains a retailer could expect to achieve when using various 

combinations of rebalancing and binary classification algorithms to identify SKU sellers from 

non-sellers? 

2. For each rebalance technique/binary classification algorithm combination, can the retailer expect 

the cost-benefit on the out of sample test set to follow more or less in line with the training data 

set? Classical statistics do not, as one might have over fit the training dataset. 

3. For each rebalance technique/binary classification algorithm combination, can the retailer expect 

the cost-benefit on the out of sample test datasets to be similar and could using the financial 

measures be used to identify which model is optimal compared to traditional statistical measures? 

 

RESULTS 

 

As shown in Table 3, each rebalance-model combination yields different traditional classification 

performance measures, but also cost-benefit business measures. The traditional statistical measures can be 

compared for all combinations. However, the financial performance can only be compared within its 

respective rebalance-model group because each set has a different number of observations. 



 
Table 3: Training data statistics per rebalance set and model 

 
The C5.0 decision tree model performed consistently the best among all sets, though the Logit model 

achieved the greatest AUC among all models in the Raw (i.e. not rebalanced) group. What is interesting 

here is that the expected financial performance measures follow closely with the statistical measures. 

 

When comparing the statistical performance of the training and testing sets in Table 4, we find that all 

models within the ROSE rebalanced set were over fit. 



 
Table 4: Training and testing assessment statistics comparison 

 
This result is interesting and unexpected. Often any particular model might be over fit and will need to be 

re-specified or re-tuned. In this study, all the models had the same tuning parameters and were trained 

using the same dataset, but the dataset was rebalanced in a different fashion. Aside from this interesting 

observation, the C5.0 decision tree performed the best for the down, up, and SMOTE rebalance datasets, 

and the Logit model performed the best when not rebalancing the training set. 

 

Table 5 shows how the expected profit and misclassification costs for each group based on the out-of-

sample testing dataset. Here all rebalance-model combinations can be compared because the dataset 

consists of the same exact records. 



 
Table 5: Testing data statistics per rebalance set and model 

 
Our results show that the financial performance measures follow closely in line with the statistical 

measures. However, without looking at the financial measures the retailer would have likely chosen the 

Up-C5.0 combination as their final production model to base their decision-support because it has the 

greatest test statistics (AUC = 0.9150/Accuracy = 85.48%). However, this model does not necessarily 

lead to the best expected profit or least misclassification costs. In fact, the Raw-C5.0 combination 

revealed respectable test statistics (AUC = 0.7561/Accuracy = 83.6%) and led to an expected profit gain 

of $62,153 and reduced misclassification costs of $6,409 compared to using Up-C5.0. 

CONCLUSIONS & FUTURE RESEARCH 

 

The results of the study show the value that might be achieved using stochastic cost-benefit analysis for 

binary classification model assessment and selection. The motivation for this research is that the 

assortment decision is considered one of the most important decisions that a retailer will make and thus 

must consider the financial considerations that their stocking decisions could make. Using naïve 

approaches such as binary classification to identify SKU sellers from non-sellers could be a viable 

baseline modeling strategy when the number of SKUs to evaluate is in the hundreds of thousands. 

However, we posit that retailer’s should also use more sophisticated approaches that incorporate 

substitution behavior. 

 

Our study is limited in that only one category of products is investigated in insolation, substitution 

behavior was disregarded, the evaluation of the business performance is retrospective over the same time 

frame as the predictions, and modeling build time is not incorporated. Ideally, all these concerns must be 

addressed by the retailer when generating timely and reliable decision-support. 

 

We want to extend this research by addressing these important financial aspects as well as other realistic 

concerns that a retailer must face so that complete assortment decision-support system can be created and 

tested. Factors we are testing include incorporating market basket analysis models, substitution behavior 



models, and constructing a valid simulation design. Consumer purchasing baskets frequently contain 

complementary products from different categories (e.g. ice cream, cake). If one product is left out the 

assortment it could impact the propensity to purchase and sales of the other item. Substitution-based 

choice model such as Multinomial Logit are frequently used to estimate propensity to sell among a 

substitutable set. Understanding the degree of this substitution can provide greater improvements to the 

retailer’s depth, and if ignored can lead to carrying too many similar products that cannibalize each 

other’s sales and lead to additional carrying costs and wasted shelf space. Also, financial considerations 

could be incorporated as we have shown in the study. The optimal way to estimate truth is to design and 

run a controlled experiment. While most business studies are observational in nature, business 

experimentation is being performed more regularly. However, we believe a valid simulation design could 

constructed by building models using older seasons, employing the decision model that incorporates all 

these aspects of the assortment decision, and then comparing our results to the latest observed season’s 

sales for products that were stocked. Lastly, to make this study cover all bases, the time to train and score 

all the various models must be accounted for. We believe that incorporating the previous mentioned items 

in conjunction with the estimated run time, based on the retailer’s resources, would provide a near 

complete solution.  
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APPENDIX 

 

 

https://www.google.com/search?es_sm=93&q=cannibalize&spell=1&sa=X&ved=0CBsQvwUoAGoVChMI16edp_HTxwIVyHo-Ch2EggYi


Figure 7: Model assessment statistics based on the training dataset 

 

 
Figure 8: Model assessment statistics based on the testing dataset 
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