
Zhuoheng Xie, Zhenghao Ye, Simon Jones, Michael Roggenburg, Chris Root, Theerakorn Prasutchai, Matthew A. Lanham
Purdue University Krannert School of Management

xie176@purdue.edu, ye122@purdue.edu, jone1107@purdue.edu, mroggenb@purdue.edu, root2@purdue.edu, tprasutc@purdue.edu, lanhamm@purdue.edu

The study focuses on comparing two popular packages in data mining and
predictive analytics, caret in R and scikit-learn in Python. The criteria used in
the comparison are accuracy, run time, as well as the limitations of the
languages. The sample dataset was acquired from WSDM-KKBox’s Churn
Prediction Challenge from Kaggle competition. Dataset will be clean and run
through ten different predictive models. These models will be trained
separately using both caret and scikit-learn.

When comparing caret with scikit-learn, the languages of the packages must
be taken to account as well. Caret can perform various data mining
functionalities easier and more in a more user-friendly way, thanks to the
nature of the R language. On the other hand, scikit-learn trains models faster
and sometimes more accurately due to how Python stores the data as
matrices. Unlike R, there is no factor class of data in the Python which leads
to some inconveniences for data mining process.

Caret Versus Scikit-learn
 A Comparison of Data Science Tools

Abstract

Conclusions

Above, the data mining workflow using Caret functions is shown. Advantages
of Caret are that it has Data Visualization functionality built-in and that it is
more oriented to handle data mining tasks.

Above, the data mining workflow using Scikit-learn functions is shown. Due to
the way data is handled in Python, it is generally faster to train a model than
caret with more robust data processing implementation, and potentially
leading to better models.

Data
We used the data from WSDM-KKBox’s Churn Prediction Challenge in Kaggle
competition. There are 673,000 observations and 32 features including one
that is an ID code. Out of these 32 features 16 are factors, 10 are numeric,
and 6 are dates.

Preprocessing - If a record was missing any feature values it was dropped.
Dummy variables were given to class features. Any features with a very low
variance was dropped along with features that were highly correlated (90%)
with each other. At the end, we centered and scaled our features with z-score
standardization.

Data Splitting -The data was split 70-30 between the data set used for
training the data and that used for testing the trained model, the split was
based on a stratified random sample.

Modeling - The models we trained were Principal component Neural Network,
Oblique Random Forest, Bagged Random Forest, Bagged ADAboost,
Gradient Boosting Machine, Support Vector Machine w/ Radial Weights,
Naive Bayes, Neural Net, Logistic Regression, and C5.0 Classification Tree.

Model Evaluation - We evaluated our models based primarily on accuracy.

Literature Review
For new data scientists, the process of learning and applying these data
mining methods can be daunting. For this reason, we conducted a literature
review to understand what is known that has been published, and thus frame
our proposed methodological workflow in this space.

We were more interested in understanding common workflows used in the
studies, than the results of the studies themselves, and we use these studies
as support for our proposed recommendation.

Caret provides one of the most comprehensive wrappers for any set of R
packages and can be solely used to define an entire workflow starting from
data cleaning and preprocessing, all the way through model training,
prediction, and performance analysis. Plus, it is free to use.

On the other hand, Scikit-learn provides the same functionalities in Python. It
is also an open-source package which is free to use. Scikit-learn is designed
for Data Mining and Machine Learning. Since Python is a widely-used
language, it is more likely to be implemented in various applications.

We ran ten separate models using both R caret and Python scikit-learn, and
described machine learning algorithms used in our study. In the Results
section we show the comparison between R and Python on runtime and
accuracy. Lastly, in the Conclusions we provide some key takeaways points
for the reader to help them in their analytics journey.

We thank Professor Matthew Lanham for constant guidance on this project.
Acknowledgements

Runtime is one of the key factors to consider when choosing among a possible set of
predictive solutions to support the business problem. Some detractors of R claim that
it does not perform as well as other languages such as Python or SAS. Thus, we
provide an idea of runtime for a large dataset such as the one this large company
uses to understand if their customers will churn or not.

There is no concrete relation between runtime and accuracy of the predictive model.
However, the more complex models will typically require more training and scoring
time. Depending on the business problem at hand, a quicker, less accurate model or
a slower, more accurate model may be preferred.

Accuracy Plot
If a model is well-trained we will expect to see the accuracy of the test set to be
similar to the accuracy of the training set. The figure below shows the accuracy of
each model on the train and test sets. Accuracy gives a percentage of the amount of
overall correctly identified targeted variable.

What we do not want is to overfit the data to the training set, which means that the
model we trained only gives us good results for the training set. If we put in the testing
data into the overfitted model, we see that the results we get for the test set are not
similar to the training set results.

Introduction

Methodology Results

R users, Python users, and R & Python
users take account of 62% of the total
number of users who perform Data Mining

Source: KDNuggets

mailto:xie176@purdue.edu
mailto:jone1107@purdue.edu
mailto:mroggenb@purdue.edu
mailto:root2@purdue.edu
mailto:tprasutc@purdue.edu.edu
mailto:lanhamm@purdue.edu

