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1. Abstract 
This research compares the results of four analytical approaches for partitioning the NCAA DIII 
Wrestling teams into regional tournaments. We compare the effectiveness of balanced optimization, 
weighted spatial clustering, weighted optimization rectangles, and genetic algorithm approaches for 
organizing teams into six regional tournaments. These approaches balance critical factors identified 
by NCAA DIII Wrestling coaches, including region strengths, region sizes, and travel distances. Our 
results provide evidence that each analytical approach presents a superior alternative to non-
analytical strategies. However, among the four clustering analyses, we found the genetic algorithm 
approach best reflects the coaches’ stated preferences for creating balanced regional tournaments. 
The implications of this research extend beyond wresting, and these findings can be applied to 
provide fair and competitive distributions of athletes for a variety of other sports in which athletes 
compete individually, but are assigned to regional tournaments as a team. 

2. Introduction 
Fairness is a central theme of NCAA sports. However, the creation of competitive regional 
tournaments is also constrained by factors including travel distances and expenses. Rankings and 
regional organization play a significant role in collegiate wrestling and affect the results of national 
tournament performance (Bigsby and Ohlmann, 2017). While receiving scant attention in 
comparison to other collegiate sports, wrestling contains several aspects that make it an interesting 
topic of research. These unique features provide opportunities to develop strategies for 
regionalization that may be applicable to several other sports.  

In NCAA competition, wrestling teams are composed of ten wrestlers, with each wrestler competing 
in a different weight class. Individual matches occur between wrestlers in the same weight class, and 
each match results in a win or loss. Individual wrestlers must compete at the same location as their 
team members, and their match performances are aggregated to determine team victories in dual 
meet and tournament settings. Historically, the teams have been divided mainly by geography and 
tradition into six regions. In each weight class, the two highest placing wrestlers at each of the six 
regional tournaments are invited to compete at the national tournament; two ‘wildcard’ competitors 
are also invited to the national tournament. 

This work was motivated by the president of the NCAA DIII Wrestling Coaches’ Association, who 
sought recommendations for developing fair, data-driven regional tournament assignments. We 
started by evaluating the NCAA’s 2016-17 DIII regional assignments, which had unbalanced regional 
sizes and difficulties, resulting in dissatisfaction among coaches and wrestlers. Some regions had as 
few as 11 teams, while others contained as many as 21. Additionally, complications occur when 
perennially successful teams are co-located into the same regions. These features are exaggerated by 
an unbalanced competitive landscape among DIII wrestling teams. In the last 25 years, only two 
schools, Wartburg College (13 titles) and Augsburg College (12 titles) have won national titles. As a 
consequence of competitive imbalance, some of the best wrestlers compete in the same region and 
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do not qualify for the national tournament. When surveyed about the current allocation of teams to 
regions, coaches reported the system was unfair by a 2:1 margin. Thus, our primary research interest 
is the equitable distribution of a limited number of invitations to the national tournament through 
the six regional tournaments. Our research question is: can an analytics-based approach improve the 
fairness of these regions by balancing region difficulty, the numbers of teams per region, and travel? 

We used a multi-step analytics approach to solve this regional assignment problem. First, we 
surveyed active DIII wrestling coaches to understand the critical factors for determining fair regions. 
We used these recommendations to analyze a dataset from the 2016-2017 NCAA DIII wrestling 
season and develop additive compositional variables for measuring team performance. In the model, 
a team’s success at the national tournament can be predicted by critical factors, including: winning 
percentages, pins and technical falls, and the number of returning all-Americans.  

This research was sponsored by the Teradata University Network1, a free resource for learning and 
teaching analytics, which organized a collaborative project among academic researchers from five 
universities. Researchers working independently at these universities applied power ratings and 
geolocation data about each team to cluster analyses forming alternative regional alignments. By 
balancing the relative importance of region strength, region size, and travel distance, these analyses 
provide recommendations on how to improve overall fairness.  

3. Developing Power Ratings 
We first surveyed the head coaches of DIII wrestling programs. Of the 103 coaches who received the 
survey, 56 coaches responded. We solicited opinions on the existing regional assignment process, 
and asked which factors should be used to determine a team’s performance. The average ratings of 
fairness and satisfaction were 3.26 and 3.62 respectively on a scale from 1 (low) to 7 (high), with 
satisfaction exhibiting a bimodal distribution. This implies that coaches largely agreed the system 
was unfair, but certain teams benefited while others suffered from inequity. Coaches reported the 
most salient factors causing unfair assignments were the imbalance in the number of teams per 
region, an imbalance in regional quality, and unfair travel distances. 
 
The number of teams per region and geolocation data for travel distances are publicly available. 
However, the coaches’ responses indicated the necessity of a power rating that could balance regional 
tournament difficulties. Through the survey and subsequent meetings, coaches identified 51 
variables that could be used to determine a team’s power rating. We then collected match data from 
18,669 unique matches for the 2016-2017 season from Intermat.com, FloWrestling.com, and the 
NCAA DIII Wrestling websites to collect values for these variables for each school.  
 
However, many of the variables were collinear; for example, the number of wins wrestlers have been 
awarded are highly correlated with the number of pins they have recorded. Through the factorization 
and consolidation of collinear variables, we developed a model that could predict a team’s score at 
nationals. When reduced to its most parsimonious form, the premise of the model is that the power 
rating is calculated as a combination of last year’s performance and this year’s performance. The 
power rating (e.g., the expected performance at nationals) is a weighted combination of team points 
at last year’s national tournament, the number of all-Americans at last year’s national tournament, 

                                                        
1 Teradata University Network (www.teradatauniversitynetwork.com) is a free resource for learning 
and teaching analytics. Every year, more than 5000 students and 12,000 people access the system 
for case studies, data sets, and homework assignments. 
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this year’s winning percentage, and this year’s “big loss” (i.e., pins and technical falls against) 
percentage. This equation contained compilation variables, which are used to develop multi-level 
models where team performance is derived from individual performances of players (Bliese, 2000). 
Our resulting equation contained six variables organized as follows:  
 
𝑃𝑜𝑤𝑒𝑟 𝑅𝑎𝑡𝑖𝑛𝑔 =  (0.376 × #𝑜𝑓 𝐴𝑙𝑙 𝐴𝑚𝑒𝑟𝑖𝑐𝑎𝑛𝑠 𝑝𝑟𝑒𝑣 𝑦𝑒𝑎𝑟) + (0.151 × 𝑛𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝑠 𝑡𝑒𝑎𝑚 𝑠𝑐𝑜𝑟𝑒 𝑝𝑟𝑒𝑣 𝑦𝑒𝑎𝑟) +  

(0.621 ×
∑ 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑠𝑒𝑎𝑠𝑜𝑛 𝑤𝑖𝑛𝑠

∑ 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑠𝑒𝑎𝑠𝑜𝑛 𝑚𝑎𝑡𝑐ℎ𝑒𝑠
) − (0.357 ×

∑ 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑠𝑒𝑎𝑠𝑜𝑛 𝑝𝑖𝑛𝑠 𝑎𝑔𝑎𝑖𝑛𝑠𝑡 +  ∑ 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑠𝑒𝑎𝑠𝑜𝑛 𝑡𝑒𝑐ℎ 𝑓𝑎𝑙𝑙𝑠 𝑎𝑔𝑎𝑖𝑛𝑠𝑡 

∑ 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑠𝑒𝑎𝑠𝑜𝑛 𝑚𝑎𝑡𝑐ℎ𝑒𝑠
) 

 
We then tested our equation on historical data from the 2015-2016 season and found that it was 
possible to predict 67.7% of the variance in the number of points scored at nationals. This level of 
predictive accuracy is similar to that of other analytical approaches for predicting the outcomes of 
individual matches, meets, and tournament results (Bigsby and Ohlmann, 2017). Finally as a test of 
robustness, we presented our predictive model back to a group of DIII wrestling coaches who 
confirmed that this model seemed anecdotally correct. We then calculated the teams’ power ratings 
for the 2016-2017 season prior to regionals and used these ratings to balance regional difficulties in 
our alternative regionalization approaches. 
 

4. Overview of Analyses 
We used four different clustering methods to develop regional realignments, including: balanced 
optimization, weighted spatial clustering, weighted optimization squares, and genetic algorithmic 
clustering. Three of the approaches were variants of K-means clustering and the fourth approach 
used a genetic optimization algorithm. The four different algorithms reflected mathematically 
optimal solutions with variations of prioritization between balanced regional difficulties, balanced 
numbers of teams per region, and travel distances. These approaches primarily used the statistical 
software package R, while one approach used Analytic Solver. SPSS, SmartPLS, MS Excel, and Tableau 
were used for data cleaning, analysis, and visualization. Each solution takes about 15 minutes to 
converge upon an optimal solution. The specifics of the four approaches are provided below.  

4.1. Balanced Optimization 
We applied a balanced k-means clustering optimization approach motivated by the cluster analysis 
methods described in Bradley et al., (1998) and Wagstaff et al., (2001). This approach developed a 6-
region solution by randomly assigning teams to initial regions and calculating a centroid for each 
initial region. Then, the nearest centroid is calculated for each team using Euclidean distance, and 
that team is assigned to the closest centroid. To accommodate the business problem constraint of 
having a balanced number of teams per region, the number of teams assigned to each region was 
evaluated during each iteration of the algorithm.  

Let 𝑋 = {𝑥𝑖}, 𝑖 = 1, . . , 𝑛 be the set of n d-dimensional observations to be clustered into a set of k 
regions, 𝐶 = {𝑐𝑘 , 𝑘 = 1, . . , 𝑘}. The traditional k-means algorithm seeks a partition where the squared 
error among the mean of each region and the observations in the region is minimized. For each 
region, 𝑐𝑘 , the squared error among the observations in 𝑐𝑘 and their respective centroid mean is 𝜇𝑘 
defined as 𝑒(𝑐𝑘) = ∑ ‖𝑥𝑖 − 𝜇𝑘‖2

𝑥𝑖∈𝑐𝑘
. This is iteratively minimized over all k regions as follows: 

min 𝑒(𝐶) = 𝑚𝑖𝑛 ∑ ∑ ‖𝑥𝑖 − 𝜇𝑘‖2
𝑥𝑖∈𝑐𝑘

𝐾
𝑘=1 . However, a traditional k-means algorithm must be extended 

to accommodate information about the number of teams that should be clustered together. 

We extend k-means clustering by adding three tuning parameters LB, UB, and λ. LB represents the 
lower bound of the number of teams within a region, UB is the upper bound of teams within a region, 
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and λ is the percentage of teams in a region above the UB constraint and is used to reassign teams 
from overpopulated regions. If 𝐶𝑖(𝑥) = ∑ 𝛿(𝑥𝑖 , 𝑐𝑖)𝑛

𝑖=1  is an indicator function counting how many 
teams 𝑥𝑖  are currently assigned to region 𝑐𝑖 , then at each iteration of the k-means algorithm we can 
identify for each region 𝑐𝑖 , the number of teams 𝐶𝑖(𝑥) that do not fall within [LB, UB]. Thus, we 
randomly assign a percentage, λ of the teams within 𝑐𝑖  to the next region that has 𝐶𝑖 (𝑥)<LB.  

This algorithm iterates until the centroids converge and the number of teams within a region are 
within the [LB, UB] parameters. Lastly, because traditional k-means clusters can be negatively 
affected by the random start, we also ran our modified algorithm multiple times with varying random 
starting centroids and averaged the final converged centroids to obtain final regional assignments. 

In this approach, geographic regions form that are close together and are more balanced in terms of 
number of terms per region. However, to satisfy the additional business constraint of having 
competitive-based regions as well, the last step in this balanced optimization approach was to 
reassign teams that could reasonably be assigned to another neighboring region to yield regions that 
are more competitively similar. This was done by identifying all possible schools that overlapped 
another geographic region, indicated by red circles as shown in Figure 1.  

 
Figure 1. Example of Border Reassignment 
 
This competitive balance optimization step is essentially an integer programming model, where the 
binary decision variables, 𝑦𝑖𝑗 ∈  {0,1} assign team i to region j, with the objective to minimize the 

difference in average power rating by region. The function is constrained so that each region must 
still have between the LB and UB. This approach prioritized a balanced numbers of schools per region 
and travel distances, but had more inter-region variability in power. 

Decision variables 
𝑦𝑖𝑗 ≔ assign candidate overlapping region team 𝑖 to region 𝑗 

 
Parameters 
𝐿𝐵 ≔ the minimum number of teams per region 
𝑈𝐵 ≔ the maximum number of teams per region 
𝜌𝑖 ≔ power rating of team 𝑖 
𝜌𝑖𝑗 ≔ power rating of team 𝑖 that is fixed to region 𝑗 

𝑓𝑗 ≔ number of teams fixed to region 𝑗 

𝑛𝑗 = ∑ 𝑦𝑖𝑗𝑖 + 𝑓𝑗 ≔ total number of teams assigned per region 𝑗 

𝑁 ≔ total number of regions 𝑗 

Objective function & constraints 

min
 

∑ [∑(𝑦𝑖𝑗𝜌𝑖 + 𝜌𝑖𝑗)/𝑛𝑗

𝑖

− (∑ (∑(𝑦𝑖𝑗𝜌𝑖 + 𝜌𝑖𝑗)/𝑛𝑗

𝑖

) /𝑁

𝑁

𝑗=1

)]

2

/𝑁

𝑁

𝑗=1

 

 
Subject to: 
𝐿𝐵 ≤ 𝑛𝑗 ≤ 𝑈𝐵   ∀ 𝑗 
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4.2. Weighted Spatial Clustering 

Our second approach used weighted spatial clustering to partition regions. Traditional spatial 
clustering techniques are useful for segmenting data based on the similarity of an attribute. A 
weighted spatial clustering approach extends this type of analysis to address multiple constraints 
(Gan et al., 2007). Specifically, this approach allows a clustering algorithm to account for (1) teams 
per region, (2) minimized travel distances, and (3) balanced power between regions.  

This approach set the region size and then randomly assigned teams to the initial regions. The 
Euclidean centers were calculated for each region using the Haversine formula to account for the 
curvature of the Earth. Then each team was reassigned to the closest region with an average power 
rating below the average power of all regions combined. For a 6-region solution, each region was 
limited to a score below the expected average region power of 36.5 (219 total power/6 regions).  

During the team reassignments, the farthest school from the center of its assigned region was 
proposed for trade to a new region to balance the number of schools in each region. After proposing 
reassignments, the sum of the distances from each school to the center of their newly proposed 
regions were recalculated to ensure reassignments would only be implemented when they decreased 
the average distance to the center of the region. This process was continued until all schools had been 
assigned to a region and any additional iterations stopped reducing the average distance of schools 
to the center of their regions. By integrating the average power of the regions into the assignment 
algorithm, the weak and strong teams are distributed evenly among regions. This method prioritized 
equalizing the number of teams per region and balancing regional power, but produced more 
variance in travel distances. 

4.3. Weighted Optimization Rectangles 
In our third approach, we focused on minimizing the total size of a set of rectangles containing all of 
the schools in each region.  The rectangles follow latitude and longitude lines and identify regions, 
and the rectangles were defined as the minimum bounding rectangles around schools in the region.  

This solution differs from traditional clustering approaches because regions are not calculated on 
straight-line Euclidean distances, but instead schools are assigned to regions in a manner that 
minimizes the sum of rectangle areas for each region (Xu and Wunsch, 2005). By adjusting the 
objective function, this technique allows prioritization and balancing between factors that affect 
clustering. This method prioritized minimizing total travel distance, while constraining the difference 
in regional power and number of teams per region to acceptable levels.  

4.4. Genetic Algorithm 
A genetic algorithm approach offers some benefits over other cluster analyses when attempting to 
simultaneously resolve competing interests. Traditional cluster analytics cannot optimize a solution 
without implicitly prioritizing some constraints over others (Hruschka et al., 2009). In contrast, a 
genetic algorithm approach generates a number of imperfect solutions. Those solutions, presented 
as potential partition strategies, are bred together to create new offspring solutions that inherit some 
combination of features from their parents. Then, according to the objective function, only the best 
new solutions are retained and allowed to breed in the next iteration. The objective function used to 
partition teams into regions was as follows: 
 
𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 𝑔𝑜𝑜𝑑𝑛𝑒𝑠𝑠 = −(𝑐1(𝑝𝑜𝑤𝑒𝑟 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒) + 𝑐2(𝑠𝑖𝑧𝑒 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒) + 𝑐3(𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛)) 
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The coefficients 𝑐1 , 𝑐2, 𝑐3 are chosen to make the range of each factor roughly equal. 
• Power variance: Compute the mean power of each region in the partition, and then compute 

the variance of that set of means.  Higher scores indicated an uneven balance of power.  
• Size variance: A region’s size is the number of schools it contains, and this is the variance of 

that set of sizes across a partition.  Higher scores indicate a greater disparity of schools per 
region. 

• Dispersion: The dispersion of a region is the sum of distances between each pair of schools 
in it; a measure of how much travel will tend to happen in that region.  The dispersion of the 
partition is the sum of the dispersions of its regions.  Higher values represent a greater 
geographic dispersion of teams within the region, and thus greater travel time and cost.  

 
In this case, each solution was represented as a vector whose length was the same as the number of 
teams and whose entries were in the set {1,2,3,4,5,6}, thus assigning each team to a partition 
numbered 1 through 6. Breeding two solutions was done via uniform crossover (the child’s i th entry 
is either the mother’s ith entry or the father’s ith entry, equally likely). Other standard crossover 
techniques were investigated (e.g., uniform crossover and others involving optimal permutations) 
but all evolved the pool at about the same rate. A mutation in this case was a random change to any 
entry in a solution vector, and was performed randomly, and infrequently. 
 
Over time the “gene pool” of partitions improves as they advantageously mutate or inherit beneficial 
features, and poor solutions are removed from the gene pool. After a sufficient number of 
generations, a near-optimal choice evolved for partitioning the schools into regions. For this analysis, 
20 potential partitions were used for each round of breeding, and the process continued for 20,000 
generations. By that time, evolution stopped yielding substantive changes in the objective function. 
The resultant solution, shown in Figure 2, was the best from the final gene pool. The genetic algorithm 
approach resulted in a balanced solution with a relatively equal prioritization of region strength, 
average distance traveled, and number of schools per region. This technique could also be adapted 
to prioritize other aspects by tweaking the values of 𝑐1, 𝑐2, 𝑐3 in the formula above.  

 
Figure 2. Genetic Algorithm Regional Assignments2 

                                                        
2 Three schools are excluded from this figure because they fly to events and are located outside the 
range of the map. 
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5. Discussion 
As displayed in Table 1, all the analytical approaches embody improvements when compared to 
previous regional assignment strategies, and all provided mathematically optimal solutions based on 
slightly different prioritizations of key factors (Wagstaff et al., 2001). The Balanced Optimization 
approach prioritized balancing the number of schools and minimizing travel distances, but had more 
variations in regional power. In contrast, the Weighted Spatial Clustering approach prioritized a 
balanced number of schools and regional power, while offering more variation in travel distances. 
The Weighted Optimization Rectangles approach prioritized balanced regional power and travel 
distances at the cost of more variation in the number of schools per region. When ranked by variance, 
the Genetic Algorithm approach is the most balanced optimization solution offering a relatively even 
weighting of regional difficulties, travel distances, and teams per region. This balance matches the 
preferences of coaches, who had indicated that an equal weighting of these three factors was ideal. 
Accordingly, we recommend implementing a regional realignment strategy that uses a genetic 
algorithmic clustering approach. 

 
Table 1. Comparison of Clustering Results 

  
2016-2017 Regional 

Alignment 
Balanced  

Optimization  
Weighted Spatial 

Clustering 
Weighted Optimization 

Rectangles 
Genetic  

Algorithm  

Region Schools Rating Dist. Schools Rating Dist. Schools Rating Dist. Schools Rating Dist. Schools Rating Dist. 

West 11 1.6 148.9 18 2.7 148.6 17 2.1 183.8 16 2.8 154.7 18 1.7 131.5 

Central 12 4.5 104.3 18 3.3 144.3 17 2.2 224.8 18 1.8 143.1 16 3.2 176.6 

Midwest 19 2.3 190.8 16 2.1 189.2 17 2.1 76.0 14 3.1 135.5 16 2.7 140.0 

Mideast 21 2.2 149.1 17 1.0 172.1 18 2.0 94.5 18 2.1 129.2 17 2.2 163.2 

East 21 1.5 153.5 16 2.7 143.2 17 2.2 141.6 19 1.6 97.0 19 1.4 92.5 

Northeast 19 1.5 197.3 18 1.1 187.9 17 2.2 173.4 18 1.7 95.9 17 1.8 99.8 

Rank  5 5 4 2 4 1 1 1 5 4 2 2 3 3 3 

Note: Distances are measured in miles 
 
Our algorithms have some limitations. First, we used the geographic locations of schools to determine 
travel distances; however, average travel distances used to compare solutions were calculated to 
mathematical centers of the regions, which may not represent the precise locations of the hosts of 
the regional tournaments. Next, the relative power of teams in DIII wrestling is strongly skewed so 
that a few teams are extremely dominant and many of the other teams are largely interchangeable in 
regional assignment (i.e., teams that are not expected to have any wrestlers qualify for the national 
tournament). As a result, it may be useful to normalize the distribution of power scores to lessen the 
possibility that the most dominant schools are assigned a region of full of “tomato can” opponents to 
balance the regional difficulties. Future research may also consider using a power rating based on a 
multilevel variation of the Elo (1978) approach based on point differentials rather than wins and 
losses, which was adapted by Bigsby and Ohlmann (2017) for predicting the performance for DI 
wrestlers. Slight improvements to the power ratings may not provide substantial changes to 
regionalization recommendations, but could incrementally improve the precision of models. 
 
Despite these limitations, each of the optimization approaches offers substantial improvements over 
the 2016-2017 regional allocation system, and we are confident that implementation would 
represent a substantial improvement to the fairness of DIII wrestling while simultaneously reducing 
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travel costs. Finally, the automated and transparent nature of these algorithms reduces the influence 
of political considerations, and can be applied dynamically as teams are added or removed from DIII 
competition or other factors (e.g. conference membership) are added for consideration. 
 

6. Conclusion 
This study compares various clustering methods applied to the problem of NCAA DIII wrestling 
regionalization. It demonstrates that multiple analytical methods exist that can produce data-driven 
approaches to assign schools to regions that balance power ratings and the numbers of teams per 
region while minimizing travel distances. Finally, this research has interesting theoretical 
implications about how the orders of operations within cluster analytics can result in the relative 
prioritization of certain factors (Wagstaff et al., 2006). These findings suggest that an order of 
precedence within priorities could be reflected in the strategic arrangement of background factors 
in clustering algorithms to produce solutions that reflect the relative prioritization of semantic rules.  
 
All of the analytical approaches in this study offered superior solutions in terms of competitive equity 
and minimized travel costs when compared to historical implementations. In particular, we found 
that a genetic algorithm approach produced a solution most desired by the NCAA DIII coaches. Jon 
McGovern, President of the National Wrestling Coaches Association for NCAA DIII Wrestling, reflects 
these sentiments in the following statement, “The NCAA Championships Committee responsible for 
arranging the new alignments in the years ahead (2019-2024) will have an opportunity to get feedback 
and new data based on the work of [this research team]. The team has already given the NCAA 
Championships Committee and the NWCA NCAA III Coaches body some very useful information and the 
hope is that this relationship will continue in the years ahead.” 
 
In addition, the findings of this study can be generalized beyond wrestling to other individual-based 
sports where regional assignments occur at the team level. The same regional alignment problems 
occur in gymnastics, cross-county, track, skiing, bowling, and swimming. Many of these sports suffer 
from the same difficulties as wrestling where competition occurs at an individual level, but 
constraints require entire teams to be collocated during competition.  

 

References 
[1] Bigsby, K. G., & Ohlmann, J. W. (2017). Ranking and prediction of collegiate wrestling. Journal of 
Sports Analytics, 3(1), 1-19. 
[2] Bradley, P. S., Fayyad, U. M., & Reina, C. (1998). Scaling Clustering Algorithms to Large 
Databases. In KDD (pp. 9-15). 
[3] Elo, A. E. (1978). The rating of chessplayers, past and present. Arco Pub. 
[4] Gan, G., Ma, C., & Wu, J. (2007). Data clustering: theory, algorithms, and applications. Society for 
Industrial and Applied Mathematics. 
[5] Hruschka, E. R., Campello, R. J., & Freitas, A. A. (2009). A survey of evolutionary algorithms for 
clustering. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 
39(2), 133-155. 
[6] Wagstaff, K., Cardie, C., Rogers, S., & Schrödl, S. (2001). Constrained k-means clustering with 
background knowledge. In ICML (Vol. 1, pp. 577-584). 
[7] Xu, R., & Wunsch, D. (2005). Survey of clustering algorithms. IEEE Transactions on neural 
networks, 16(3), 645-678. 

 


